Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification

نویسندگان

  • Peter Kellman
  • Michael S Hansen
  • Sonia Nielles-Vallespin
  • Jannike Nickander
  • Raquel Themudo
  • Martin Ugander
  • Hui Xue
چکیده

BACKGROUND Quantification of myocardial blood flow requires knowledge of the amount of contrast agent in the myocardial tissue and the arterial input function (AIF) driving the delivery of this contrast agent. Accurate quantification is challenged by the lack of linearity between the measured signal and contrast agent concentration. This work characterizes sources of non-linearity and presents a systematic approach to accurate measurements of contrast agent concentration in both blood and myocardium. METHODS A dual sequence approach with separate pulse sequences for AIF and myocardial tissue allowed separate optimization of parameters for blood and myocardium. A systems approach to the overall design was taken to achieve linearity between signal and contrast agent concentration. Conversion of signal intensity values to contrast agent concentration was achieved through a combination of surface coil sensitivity correction, Bloch simulation based look-up table correction, and in the case of the AIF measurement, correction of T2* losses. Validation of signal correction was performed in phantoms, and values for peak AIF concentration and myocardial flow are provided for 29 normal subjects for rest and adenosine stress. RESULTS For phantoms, the measured fits were within 5% for both AIF and myocardium. In healthy volunteers the peak [Gd] was 3.5 ± 1.2 for stress and 4.4 ± 1.2 mmol/L for rest. The T2* in the left ventricle blood pool at peak AIF was approximately 10 ms. The peak-to-valley ratio was 5.6 for the raw signal intensities without correction, and was 8.3 for the look-up-table (LUT) corrected AIF which represents approximately 48% correction. Without T2* correction the myocardial blood flow estimates are overestimated by approximately 10%. The signal-to-noise ratio of the myocardial signal at peak enhancement (1.5 T) was 17.7 ± 6.6 at stress and the peak [Gd] was 0.49 ± 0.15 mmol/L. The estimated perfusion flow was 3.9 ± 0.38 and 1.03 ± 0.19 ml/min/g using the BTEX model and 3.4 ± 0.39 and 0.95 ± 0.16 using a Fermi model, for stress and rest, respectively. CONCLUSIONS A dual sequence for myocardial perfusion cardiovascular magnetic resonance and AIF measurement has been optimized for quantification of myocardial blood flow. A validation in phantoms was performed to confirm that the signal conversion to gadolinium concentration was linear. The proposed sequence was integrated with a fully automatic in-line solution for pixel-wise mapping of myocardial blood flow and evaluated in adenosine stress and rest studies on N = 29 normal healthy subjects. Reliable perfusion mapping was demonstrated and produced estimates with low variability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of spatiotemporal fidelity in quantitative 3D first-pass perfusion cardiovascular magnetic resonance

BACKGROUND Whole-heart first-pass perfusion cardiovascular magnetic resonance (CMR) relies on highly accelerated image acquisition. The influence of undersampling on myocardial blood flow (MBF) quantification has not been systematically investigated yet. In the present work, the effect of spatiotemporal scan acceleration on image reconstruction accuracy and MBF error was studied using a numeric...

متن کامل

Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography

BACKGROUND Recent studies have shown that quantification of myocardial perfusion (MP) at stress and myocardial perfusion reserve (MPR) offer additional diagnostic and prognostic information compared to qualitative and semi-quantitative assessment of myocardial perfusion distribution in patients with coronary artery disease (CAD). Technical advancements have enabled fully automatic quantificatio...

متن کامل

Quantitative three-dimensional myocardial perfusion cardiovascular magnetic resonance with accurate two-dimensional arterial input function assessment

BACKGROUND Quantification of myocardial perfusion from first-pass cardiovascular magnetic resonance (CMR) images at high contrast agent (CA) dose requires separate acquisition of blood pool and myocardial tissue enhancement. In this study, a dual-sequence approach interleaving 2D imaging of the arterial input function with high-resolution 3D imaging for myocardial perfusion assessment is presen...

متن کامل

Quantification of myocardial perfusion by cardiovascular magnetic resonance

The potential of contrast-enhanced cardiovascular magnetic resonance (CMR) for a quantitative assessment of myocardial perfusion has been explored for more than a decade now, with encouraging results from comparisons with accepted "gold standards", such as microspheres used in the physiology laboratory. This has generated an increasing interest in the requirements and methodological approaches ...

متن کامل

Quantification of myocardial perfusion with self-gated cardiovascular magnetic resonance

BACKGROUND Current myocardial perfusion measurements make use of an ECG-gated pulse sequence to track the uptake and washout of a gadolinium-based contrast agent. The use of a gated acquisition is a problem in situations with a poor ECG signal. Recently, an ungated perfusion acquisition was proposed but it is not known how accurately quantitative perfusion estimates can be made from such datase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017